

Scheme – 2020

Department of Mechanical Engineering G. Pulla Reddy Engineering College (Autonomous): Kurnool Accredited by NBA of AICTE and NAAC of UGC Affiliated to JNTUA, Anantapuramu

Scheme and Syllabus for Minor of FOUR YEAR B.Tech. Degree Course in MECHANICAL ENGINEERING

(With Effect from the Batch Admitted in 2020-21)

VISION OF THE DEPARTMENT

To develop the department into a model center of education and research in the field of Mechanical Engineering and allied areas and to become a significant contributor to the development of industry and society

MISSION OF THE DEPARTMENT

- M1 To impart quality technical education in emerging fields of Mechanical Engineering through balanced academic curriculum in accordance with changing industry requirements
- M2 To establish centers of excellence where students can strengthen their entrepreneurial skills, technical workmanship, and research proficiency
- M3 To provide opportunities/platforms for students to nurture leadership abilities, ethical values; and to enable them learn responsibility and accountability at work

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The educational objectives of the under-graduate programme in Mechanical Engineering at G. Pulla Reddy Engineering (Autonomous) Kurnool are to prepare graduates to possess the ability **PEO1** To apply a broad, fundamental-based knowledge, and up-to-date skills required in

performing professional work in Mechanical Engineering and related disciplines

- **PEO2** To design works pertaining to Mechanical Engineering, incorporating the use of design standards, realistic constraints and consideration of the economic, environmental, and social impact of the design
- **PEO3** To use modern computer software tools to solve Mechanical Engineering problems and explain and defend their solutions and communicate effectively using graphic, verbal and written techniques to all audiences and
- **PEO4** To become successful entrepreneur or leaders in private/governmental organizations or enter graduate programs in Mechanical Engineering and related disciplines and to pursue lifelong learning and research

PROGRAM SPECIFIC OUTCOMES (PSOs)

Mechanical Engineering Program Students will be able to

- Understand the concepts of basic Mechanical Engineering and apply their theoretical & practical knowledge to solve problems in Thermal Engineering, Machine Design, Production Engineering and Industrial Engineering.
- 2. Solve engineering design and manufacturing problems, using CAD, CAE, and CAM tools, along with analytical skills to arrive at the better solutions.

PROGRAMME OUTCOMES (POS)

Mechanical Engineering Program Students will be able to

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

DEPARTMENT OF MECHANICAL ENGINEERING Minor in Mechanical Engineering

(For Non Mechanical Engineering students) Scheme of Instruction and Examination

S. No	Categ	Course Title	Cradita	So In per	chem struc iods/	e of tion week	Scheme of Examination Maximum Marks			
	ory	Course Title	Creuits	L	Т	P/D	End Exam Marks	CIA Marks	Total Marks	
Ι		<u>Theory</u>								
1.	PCC	Engineering Mechanics	4	3	1		60	40	100	
2.	PCC	Thermal Engineering	4	2	1	2	60	40	100	
3.	PCC	Materials Technology	4	4			60	40	100	
4.	PCC	Production Technology	4	2	1	2	60	40	100	
5.	PCC	Fundamentals of Engineering Design	4	3	1		60	40	100	
6.	PCC	Production Planning and Control	4	3	1		60	40	100	
7.		MOOC – I	2						100	
8.		MOOC – II / Mini Project	2						100	
		Total	20							

Note: 1. Student can opt any 4 subjects.

- 2. Compulsory MOOC/NPTEL courses for 04 credits (02 courses @ 2 credits each) OR One MOOC course and Mini project @ 2 credits each
- 3. A student shall be permitted to choose only those courses that he/she has not studied in any form during the Program.
- 4. Minor must be completed simultaneously with a Major degree program.

ENGINEERING MECHANICS (EGM)

Course	Category	Ηοι	urs/W	leek	Credits	Maximur	Maximum Marks				
Code			1			Oentinueur					
MME01	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	1	-	4	40	60	100			
Sessional E	xam Duration	:1 3	/2 Hr	s		End Exa	m Durati	on: 3 Hrs			
Course Out	comes : At the	end	of the	e cou	rse studer	nts will be able to					
CO1 : Calcu	CO1 : Calculate the resultant of different force systems										
CO2: Deterr	nine the unkno	wn f	orces	in de	eterminate	e structures using equ	uilibrium	conditions			
CO3 : Deter	mine the axial	force	s in t	he m	embers of	determinate trusses					
CO4 : Under	rstand the con	cept	of fric	tion							
CO5 : Dete	rmine the cent	roid	and	mom	ent of ine	ertia of areas Compu	te the st	resses and			
strains of ax	cially loaded me	embe	rs, el	astic	constants	of different materials	3				
					UNIT - I						
Forces and	Force System	. s	114000	t of		comparent and ma		mont forme			
systems – C	oncept of mom	ent –	Varia	n or mon'	's theorem	concurrent and no	on concu	Tent lorce			
Equilibriun	n of Systems o	f Fo	rces	50	0 011001011						
Equilibrium	concept in m	echa	nics	– Fre	ee body d	liagram - Equilibriu	n of copl	anar force			
systems											
					UNIT - II						
Reactions i	n Beams										
Types of lo	ads, supports	and	bear	ns –	Support	reactions for simply	v support	ed beams,			
cantilever at	nd overhanging		ms su	ibject	ed to diffe	erent types of loads.					
Analysis of s	simple trusses	е ги bv m	ethod	l of io	s ints and r	nethod of sections					
		oy 111		1 01 30							
Friction											
Introduction	n to Friction. I	mpei	nding	Mot	ion. Ladd	er Friction. Friction	in square	e threaded			
screws - sin	nple screw jack	s. Be	lt Fri	ction	, friction i	n flat & V-belt, Ratio	o of tensi	ons, Power			
transmission	n by belts.										
				1	UNIT - IV						
Central Poi	nts			-							
Concept of f	irst moment – I	Defin	ition	of cer	ntroid and	l centre of gravity – C	entroid of				
composite a	reas.										
Area Mome	nt of Inertia		11 .	1	1		N <i>G</i>	C :			
Moment of 1	nertia ior area	s – P	aralle		i perpena	icular axis theorems	– Momen	t of inertia			
of compound	u sections – Ra	aius	or gy	ratior	1. TINIT V						
Mechanica	of Deformation	Sc1	ide		0M11 - V						
Mechanical law – Stress	properties of m - strain curve f	ateri	als –S actile	Simpl mate	e stresses rial – Fact	and strains – Types o for of safety and work	of stresses ting stress	s – Hooke's s.			
			istan	TS	hoor to	an Dolotion hot-	vo Vorenst	_			
modulus, R	igidity modulus	s, Bu	linent	dulu	s and Pois	ss – Relation betwee	in roungs	S			

Text Books :

 R.K. Bansal, "A text book of Engineering Mechanics", Laxmi Publications
 B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Mechanics of materials", Laxmi Publications.

3. Basudeb Bhattacharyya, "Engineering Mechanics", Oxford University Press.

Reference Books :

- 1. Thimoshenko & Young, "Engineering Mechanics", Tata McGraw-Hill Publications
- 2. Bhavikatti and Rajasekharappa, "Engineering Mechanics", New Age Intl. Publications
- 3. A.K. Tayal, "Engineering Mechanics –Statics & Dynamics", Umesh Publications
- 4. R.K.Rajput, "Applied Mechanics", Laxmi Publications.

Web Resources:

1. www.nptel.ac.in/courses

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub-questions and the student should answer any one question from each unit. Each Question carries 12 marks.

THERMAL ENGINEERING (TE)

Course Code	Category	Hours/Week			Credits	Maximum Marks					
MME02	PCC	L	т	Р	С	Continuou s Internal Assessmen t	End Exam	TOTAL			
		3	1		4	40	60	100			
Sessional	Exam Dura	tion :	1 1/2	Hrs		End Exa	n Duratio	on: 3 Hrs			
Course Ou	Course Outcomes : At the end of the course the student will be able to										
CO1: Understand the basics of thermodynamics and working of air standard cycles.											
CO2: Anal	yze working	of IC	engine	es and its pe	rformance.						
CO3: Und	erstand heat	trans	sfer ap	plications ar	nd its gove	rning laws					
CO4: Und	erstand Refr	igerat	ion ar	nd air conditi	oning worl	king and its per	formance				
CO5: Und	erstand use	of ene	ergy re	sources and	energy au	diting.					
				UNIT	1 - 1						
isolated: 7 Zeroth law and heat. Dual cycle	isolated: Thermodynamics intermodynamics systems- closed, open and isolated: Thermodynamic equilibrium, thermodynamic process, thermodynamic cycles, Zeroth law of Thermodynamics and its applications, energy transfer in the form of work and heat. Reversible and irreversible cycles, air standard cycles-Carnot, Otto, Diesel and Dual cycles. P.V. and T-S diagrams										
Heat Tran Radiation, Heat trans	 IC engines : IC engine- definition-classification- Terminology, Working principle of two stroke petrol & Diesel engine, Working principle of Four stroke petrol & Diesel engine. Testing of IC engines- Brake power, Indicated power, Mechanical efficiency, indicated thermal efficiency, brake thermal efficiency.(Theoretical only) UNIT - III Heat Transfer : Introduction, Methods of heat transfer - Conduction, Convection and Radiation, Fourier's law of heat conduction, Newton law of cooling- Stefan-Boltzman law-Heat transfer by conduction through composite wall, Heat transfer radiation, Absorptivity, Transfer Engine heading 										
				UNIT	- IV						
Refrigeration refrigeration system, Con Psychrom processes, only)	Refrigeration& Air Conditioning: Working principle of refrigerator, Methods of refrigeration, Vapour compression refrigeration systems, Vapour absorption refrigeration system, Comparison, COP. Refrigerants – Properties and Selection. Psychrometry: Properties of atmospheric air, Psychometric chart, Psychrometric processes, Simple air flow diagram for an Air-Conditioning system (Theoretical concepts only)										
				UNIT	· - V			-			
Fundamentals of Energy : Classification of energy sources, common forms of energy, important of Non conventional energy sources, Energy chain, Advantages and disadvantages of conventional energy sources, Salient features of non conventional energy sources, Environmental aspects of energy, Environmental – Economy, Energy sustainable development, Energy auditing, World energy status.											
	EXPERIMEN	TS	1 -+-	notro Diazzi F	`n cin a						
1. Per 2. Mo 3. Det 4. Det 5. Det 6. Det	 Performance Test on 4 - stroke Diesel Engine Morse Test on Multi-cylinder Petrol Engine Determination of Thermal conductivity of composite wall Determination of Stefan - Boltzmann constant Determination of heat transfer coefficient under natural convection 										
7. Per	formance tes	st on 1	efrige	ration tutor							

1. P.K. Nag, Engineering Thermodynamics, TMH publishers, New Delhi.

- 2. Mahesh M Rathore, Thermal Engineering, Mc Graw Hill Education (INDIA) Private limited New delhi.
- 3. B.H. Khan, Non-conventional Energy Sources, TMH publishers, New Delhi.

Reference Books

- 1. RK Rajput, Thermal Engineering, Lakshmi Publications, New Delhi.
- 2. G.D.Rai, Non-conventional Energy Sources, Khanna Publishers, New Delhi.

Web Resources:

1. http://nptel.ac.in/courses/112106141

2. https://nptel.ac.in/courses/121/106/121106014/

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub- questions and the student should answer any one question from each unit. Each Question carries 12 marks.

MATERIALS TECHNOLOGY (MT)

Course Code	Category	Ho	urs / V	Veek	Credits	Maxim	Maximum Marks			
MME03	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		4			4	40	60	100		
Sessiona	l Exam Durati	on:1 5	/2 Hrs	5		End Exa	m Duratio	on : 3 Hrs		
Course	Outcomes : At	the en	d of th	ne cours	se student	ts will be able to				
$\mathbf{CO 1}: \begin{bmatrix} \mathbf{U} \\ \mathbf{r} \end{bmatrix}$	1 : Understand the classification of materials, deformation and failure of materials.									
CO 2 : P	Understand the Iron Carbide Phase Diagram and Identify Heat treatment processes to improve Mechanical properties of materials for applications in Engineering Industries									
CO 3 : ^[]	Inderstand the omposites.	types	of con	nposites	s and fabi	rication methods	of polymo	er matrix		
CO 4 : U	Inderstand the	fabricat	tion m	ethods (of ceramic	and metal matrix	composit	es.		
CO 5 : $\begin{bmatrix} t \\ s \end{bmatrix}$	Inderstand the tructures of ma	metho terials.	ods fo	or analy	yzing the	mechanical pro	perties ai	nd micro		
		_		UNI	[T – I					
Classifica Ceramics Deforma Classifica plastic de Failures: Definition fracture, Phase Di	Introduction: Classification of Materials – Metals – Ferrous & Non-ferrous, Non-metals, Polymers, Ceramics and Composites: Definition, general properties, applications with examples. Deformation: Classification, Types of deformations, Elastic and plastic deformations, Mechanisms of plastic deformations – Slip and Twinning. Failures: Definition and types of facture, Brittle fracture, Dislocation theory of fracture, Ductile fracture, fatigue failure, Creep, Stages of creep. UNIT – II Phase Diagrams:									
Fe ₃ C diag Heat Tre Purpose Hardenin	Lever Rule, Phase rule. Cooling curve of pure iron, construction and interpretation of Fe- Fe ₃ C diagram, Effect of alloying elements on Fe-Fe ₃ C diagram. Heat Treatment of Steels: Purpose of heat treatment, different heat treatment processes, Annealing, Normalising, Hardening, and Tempering, TTT diagrams. Hardenability, determination of hardenability.									
				UNI	Γ – III					
Introduction to Composites: Types of Composites- Matrix and their role – Principal types of fibre and matrix materials. Polymer Matrix Composites Hand layup techniques – filament winding – Pultrusion – Injections moulding – Blow moulding - Compression moulding – Reaction injection moulding. UNIT – IV										
Ceramic Manufact sintering ceramic r Metal Ma Manufact Stir casti	Matrix Compo- uring of Ceran Processing and natrix composite trix Composite uring of Metal ng process, Squ	sites: nic Ma d struc es - Alu es: Matrix <u>eeze ca</u>	trix C ture o mina Compo sting p	omposit f glass, matrix o osites – process,	tes; Liquid glass-cera composites Physical Infiltratio	d Metal Infiltration amics, and ceram s - Carbon-carbor vapor deposition, n, Spray deposition	on – Liqu lics – Proc licomposit Diffusion on process	id phase cessing of ces. bonding, s.		

Analysis of Materials:

Principle, Theory, Working and Application; , Universal Testing Machine , X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermal Gravimetric Analysis, Dynamic Mechanical Analysis.

Text Books:

- 1. William D Callister, Material science and Engineering adopted by R. Bala Subramaniam Wiley India Pvt Ltd New Delhi.
- 2. V. Raghavan, Material Science and Engineering, PHI Publishers, New Delhi.

3. Sidney H. Avner, Introduction to Physical Metallurgy. TMH Publications, New Delhi.

Reference Books:

- 1. William F. Smith, Foundations of Material Science and Engineering, McGraw Hill, New York.
- 2. Donald R. Askel Pradeep P. Fulay, Essentials of Material Science Engineering, CENGAGE Learning
- **3.** Dr. V.D. Kodgire, S.V. Kodgire, Material Science and Metallurgy, Everest Publications, New Delhi

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub- questions and the student should answer any one question from each unit. Each Question carries 12 marks.

PRODUCTION TECHNOLOGY (PT)

Course Code	Category	Но	urs/W	eek	Credits	Maxim	Maximum Marks				
MME04	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	1		4	40	60	100			
Sessional Exam Duration : 1 ½ Hrs End Exam Duration: 3											
Course Outcomes : At the end of the course the student will be able to											
CO1: Understand the concepts of foundry and casting, types of casting and defects in casting											
CO2: Diff	CO2: Differentiate hot working, cold working and rolling processes, Understand the principles operations and types of forging extrusion and drawing processes										
principles, operations and types of forging, extrusion and drawing processes.											
CO3: Ur	nderstand the	princi	ples a	nd ap	plications c	of welding proce	sses, suc	h as gas			
wel	ding, arc weld	ling, 1	esistai	nce w	elding, ther	mit welding, la	ser beam	welding,			
elec	erstand Conce	aing, s ent of	theory	ng, bra	zing and br	aze welding.	with th	e help of			
me	rchants circle d	liagrar	n, worl	king of	f machine to	ools such as lath	e, Milling	machine,			
Dri	lling machine, (Grindi	ng mao terials	ther	nosetting a	nd thermonlast	ic) and n	rocessing			
tecl	hniques of plast	stics	and th	heir a	pplications.	understand th	e concept	t of CNC			
ma	chines.				FF		I				
				UI	I – TIN						
Foundry furnaces for Casting: second	: Introduction or ferrous and r sand casting, o asting defects.	to pat non-fe contin	terns a rrous r uous o	and fo metals casting	s, classificat pundry, mou such as cuj g, investmer	ulding Sand, San pola and Arc furn nt casting, cent	nd testing nace, rifugal ca	sting, die			
				UN	IT – II						
Plastic det Rolling: p Forging: p Extrusion tubes.	ormation of me rinciple, types o principle, Smith .: principle, Di	tals: H of rolli Forgi rect,	lot and ng mill ng, Dro Indirec	l cold v .s, op and et, Imp	working of n Press forgin pact and H	netals ng, M/C forging, ydrostatic extru	sion, Ext	rusion of			
Drawing:	Wire drawing a	nd tub	e draw	/ing							
Wolding	alegaification of	·				ding (TIC (CTAN) and MI(
welding), r Advanced	resistance weldi Welding meth	ing an iods : p	d therr lasma	nit wel Arc, L	ding aser Beam,	Electron Beam,	Ultrasonio	c, Brazing			
	8,			UN	IT – IV						
 Principles of metal cutting: Classification of metal cutting operations, Nomenclature of Single point cutting tool, mechanics of metal cutting, mechanism of chip formation, types of chips, oblique and orthogonal cutting - Merchant's Theory of metal cutting, Merchant's circle diagram for forces. Different types of machine tools for metal cutting: Lathe, Milling machine, Drilling machine 											
				UN	IIT – V						
Processin and applic	g of Plastics : ations, injection	Class: n, blov	ificatio v mold	n of p ing, co	plastics, the ompression	rmoplastics, the molding and Tra	rmosettin nsfer Molo	g plastics ling.			
CNC Macl machines	hines: Introduc parts of CNC M	ction to Iachin	o NC n es, Def	nachin Terence	es, parts of between N	NC Machines, I C and CNC Mach	ntroductio nines.	on to CNC			

List of Experiments

- 1. To find the percentage of water content and clay content in mould sand.
- 2. To determine the grain fineness number of sand using sieve shaker.
- 3. To prepare a sand mould using split piece pattern.
- 4. To prepare a Lap Joint Using MIG Welding.
- 5. To prepare a Butt Joint Using TIG Welding.
- 6. To prepare a butt joint using Oxy Acetylene Gas Welding.
- 7. Step Turning and Taper Turning on Lathe.
- 8. To drill a hole on Drilling machine.
- 9. To cut V-groove cutting on Shaper Machine.
- 10. Simple step Turning operation on CNC Lathe.
- 11. Simple Milling operation on CNC Mill.

Text Books :

1. P. C. Sharma, A Text of production Technology (Manufacturing Processes), S Chand and Company, New Delhi

2. Pakirappa, Metal Cutting And Machine Tool Engineering, Durga Publishing House

3. Pakirappa, Production Technology, Durga Publishing House

Reference Books :

1. R. K. Jain, Production Technology, Khanna Publications, New Delhi.

- 2. Kalpak Jian, Schmid, manufacturing processes for Engineering Materials. Pearson, New Delhi
- 3. Roy A. Lindberg, Processes and Materials of Manufacture, PHI Publishers, New Delhi.

Web Resources:

http://nptel.ac.in/courses/112107145/

https://nptel.ac.in/courses/112/104/112104304/

https://nptel.ac.in/courses/112/104/112104301/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub-questions and the student should answer any one question from each unit. Each Question carries 12 marks

FUNDAMENTALS OF ENGINEERING DESIGN (FED)

Con	urse ode	Category	Но	ours / V	Week	Credits	Maximum Marks						
MM	E05	PCC	L	Т	Р	С	Continuous Internal Assessment	Continuous Internal Assessment					
			3	1		4	40	60	100				
Sessi	onal l	Exam Durati	ion : 1	⅔ Hrs			End Exam Duration : 3 Hrs						
0	•		1	1 6 41									
Cours	se Ou	itcomes : A	t the er	nd of th	ne cour	rse, stude	nts will be able t	0					
CO1 :	failures, selection of material and impact loads												
CO2 :	Des	ign the bolt	ed, riv	eted a	nd wel	ded joints	3.						
CO3 :	Des	ign shafts a	ind key	ys		5							
CO4 :	Des	ign spur an	d helio	cal gea	rs.								
CO5 :	Des	ign antifrict	ion be	arings	, helica	al springs	s and leaf Spring	gs.					
					UN	IT – I							
Desig metho factor Maxin distor	Design Principles: The art and science of machine design, types of design methods, stages in machine design, selection of materials, types of loads and factor of safety. Maximum Principal stress theory, Maximum shear stress theory, Maximum principal strain theory, Maximum strain energy theory, Maximum distortion energy theory impact loads. Introduction to computer aided design												
					UN	IT – II							
Bolte joints Rivet joints Weld Desig of sha Keys	Joints:Bolted Joints:Bolted joints, stresses in bolts, bolts of uniform strength, boltedjoints under eccentric loading.Riveted Joints:Types of riveted joints, modes of failure, strength and efficiency of rivetedjoints, pitch of the rivets, design stresses, boiler joints, diamond joints.Welded Joints:Types of welded joints, strength of welds, Design of simple welded joints.UNIT - IIIDesign of Shafts:Design of solid and hollow shaft for strength and rigidity, design of shafts for combined loads.Keys:Types of Keys, stresses in Keys, design of rectangular, square and taper												
					UNI	[T – IV							
Desig bendi gears	gn of ing st , bev	Gears: Clatrength, dyn el gears and	assifica namic 1 worm	ation o load a 1 gears	of gear and fat s.	rs, design figue of g	n of spur gears, gear tooth, Intro	, Lewis eduction t	quation - to Helical				
					UN	IT – V							
 Antifriction Bearings: Ball and roller bearings, static load, dynamic load, equivalent radial load, design and selection of ball and roller bearings. Springs: Classification of springs, design of coiled springs of various cross section, concentric springs, leaf springs, Belleville springs 													
Text	Text Books:												
1. R.1	K. Ja	in, Machine	e Desig	gn, Kha	anna F	Publishers	s, New Delhi						
2. V.	B.Bh	andari, Des	ign of	Machi	ne Ele	ments, TI	MH Publishers,	New Delh	i				
Refer	ence	Books:											
1. Sc	haun	n's series, N	<i>l</i> achin	e Desi	gn, TM	IH Publis	hers, New Delhi	i					
2. Sadhu Singh, Machine Design, Khanna Publishers, New Delhi													

3. Joseph E. Shigely, Mechanical Engineering Design, TMH Publishers, New Delhi

4. M.F. Spotts, Design of Machine Elements, PHI Publishers, New Delhi

5. Pandya and Shah , Machine Design, Charotar Publishers

Data Hand Book:

Mahadevan and Balaveera Reddy, Machine Design Data Hand Book, CBS Publishers, New Delhi

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub-questions and the student should answer any one question from each unit. Each Question carries 12 marks

PRODUCTION PLANNING & CONTROL (PPC)

Cours Code	e	Category	Hours / Week		Credits	Maximum Marks						
MMEC)6	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
			3	1		4	40	60	100			
Session	al E	xam Durat	ion :	1 ½ H	Irs		End Exam Duration : 3 Hrs					
Course	Course Outcomes : At the end of the course, students will be able to											
CO1 :	: Understand the overview of the production / operations management system											
CO2 :	Ap	ply the for	ecast	ing te	chnie	ques						
CO3 :	Ap lin	ply aggrega e balancing	ate pl g pro	lannir blems	ng, m S	laster sch	eduling and M	RP techniques	s and solve			
CO4 :	So	lve invento	ry re	lated	probl	lems						
CO5 :	Un	derstand t	he co	oncep	ts of	quality a	nd its related te	chniques				
						UNIT –	I					
Introdu continu speciali	ous zati	o n : Definiti , Product on, Produc	ion, f des t life	functi ign a cycle	ons o and	of PPC, ' developn	Types of produ nent, standard	ction — job, lization, simp	batch and plification,			
					_	UNIT – I	I					
Forecas judgmer Correla	s tin ntal tion	g: Introdu methods, method	iction Time	to e seri	Fore les n	casting, nethod, I	Forecasting me Exponential sm	ethods – Op loothing, Reg	inion and ression &			
						UNIT – I	II					
Aggrega	ate	Planning	& M	aster	Sch	eduling:	Introduction,	Objectives of	Aggregate			
Plannin	ig, (tion	Schedulin	ggreg ø	gate I	plann	ling, Stra	ategies in aggre	egate plannin	ig, Master			
Assemb	oly	line balar	o ncing	g – N	letho	ds of lir	ne balancing: I	Largest candi	date rule,			
Kilbridg	ge a	nd Wester's	s met	thod,	and	Ranked F	Positional Weigh	ts method				
Materia	al Ro	equiremer	it Pla	innin	g (MI	RP): Impo	ortance of MRP,	MRP system i	nputs and			
outputs	5 , 1 1 1	Ki calcula	10115									
						UNIT – I	v					
Invento	orv	Managem	ent:	Introd	luctio	on. Types	of Inventories.	Inventory Cos	sts			
Determ shortag ABC an	ini es, alvs	stic Inven EOQ mode	tory el wit	mode h pla	e ls : E nned	Basic EO shortag	2 model, Manuf es, Inventory m	acturing mod odel with prio	el without ce breaks,			
	5					UNIT - V	7					
Quality	C	ontrol : Co	oncer	ot of a	nuali	ty, evolut	tion of quality of	control. assig	nable and			
chance Attribut	chance causes of variation, Variable Control charts (averages and ranges charts) Attributes control charts (P chart and C chart),											
Accept	anc DC (e Samplin curves of si	g – S ingle	Single samp	Sam ling	pling, Do plans	ouble Sampling	and Multiple	sampling			
Text Bo	oks	:										
1. Josep	ph (G. Monks,	Opera	ations	s Mar	nagement	, TMH Publishe	ers, New Delhi	i			
2. M.Ma and C	ahaj Co, I	an, Indust New Delhi	rial E	Engine	eerin	g and pro	oduction manag	gement, Dhan	pat rai			

Reference Books:

1. S.N. Chary, Operations Management, TMH Publishers, New Delhi

2. N.D. Vohra, Quantitative techniques in Management, TMH publishers, New Delhi 3. R. Panneerselvam, Production and operations management, PHI

Web Resources:

1. <u>https://nptel.ac.in/courses/110/107/110107141/</u>

2. <u>https://nptel.ac.in/courses/112/107/112107143/</u>

3. https://nptel.ac.in/courses/112/107/112107238/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub-questions and the student should answer any one question from each unit. Each Question carries 12 marks